
PLTW Engineering

PLTW Engineering Formula Sheet 2018 (v18.0)

1.0 Statistics	
	Mode
$ \begin{array}{l} \hline \textit{Mean} \\ \mu = \frac{\sum x_i}{N} & (1.1a) & \overline{\mathbf{X}} = \frac{\sum x_i}{n} & (1.1b) \\ \hline \mu = \text{population mean} \\ \overline{\mathbf{x}} = \text{sample mean} \\ \sum x_i = \text{sum of all data values } (x_1, x_2, x_3, \ldots) \\ N = \text{size of population} \\ n = \text{size of sample} \end{array} $	Place data in ascending order. Mode = most frequently occurring value (1.4) If two values occur with maximum frequency the data set is <i>bimodal</i> . If three or more values occur with maximum frequency the data set is <i>multi-modal</i> .
	Standard Deviation
Median Place data in ascending order. If N is odd, median = central value If N is even, median = mean of two central values N = size of population	$\sigma = \sqrt{\frac{\Sigma(x_i - \mu)^2}{N}} (Population) (1.5a)$ $s = \sqrt{\frac{\Sigma(x_i - \overline{x})^2}{n - 1}} (Sample) (1.5b)$ $\sigma = population \ standard \ deviation$
Range (1.5)	s = sample standard deviation x_i = individual data value ($x_1, x_2, x_3,$)
Range = $x_{max} - x_{min}$ (1.3) x_{max} = maximum data value x_{min} = minimum data value	μ = population mean \overline{x} = sample mean N = size of population n = size of sample
2.0 Probability	
2.01100a0iiity	Independent Events
	$P (A and B and C) = P_A P_B P_C $ (2.3)
$Frequency$ $f_x = \frac{n_x}{n}$ (2.1)	P (A and B and C) = probability of independent events A and B and C occurring in sequence P _A = probability of event A
f_x = relative frequency of outcome x	Mutually Evolution Events
n_x = number of events with outcome x n = total number of events	Mutually Exclusive Events
	$P(A \text{ or } B) = P_A + P_B \tag{2.4}$
Binomial Probability (order doesn't matter)	P (A or B) = probability of either mutually exclusive event A or B occurring in a trial P _A = probability of event A
$P_{k} = \frac{n!(p^{k})(q^{n\cdotk})}{k!(n\cdotk)!} \tag{2.2}$	Conditional Probability
P_k = binomial probability of k successes in n trials p = probability of a success q = 1 - p = probability of failure k = number of successes n = number of trials	$P(A D) = \frac{P(A) \cdot P(D A)}{P(A) \cdot P(D A) + P(\sim A) \cdot P(D \sim A)} $ (2.5) $P(A D) = \text{probability of event A given event D}$ $P(A) = \text{probability of event A occurring}$ $P(\sim A) = \text{probability of event A not occurring}$ $P(D \sim A) = \text{probability of event D given event A did not occur}$

© 2018 Project Lead The Way, Inc. PLTW Engineering Formula Sheet 2018

6.0 Conversions			
Mass/Weight (6.1) 1 kg = 2.205 lbm 1 slug = 32.2 lbm 1 ton = 2000 lb 1 lb = 16 oz	Area (6.4) 1 acre = 4047 m ² = 43,560 ft ² = 0.00156 mi ² Volume (6.5)	Pressure (6.8)1 atm= 1.01325 bar= 33.9 ft H2O= 29.92 in. Hg= 760 mm Hg= 101,325 Pa	Rotational Speed (6.11) 1 Hz = 2π rad/sec = 60 rpm
Length (6.2) 1 m = 3.28 ft 1 km = 0.621 mi 1 in. = 2.54 cm 1 mi = 5280 ft 1 yd = 3 ft	$1L = 0.264 \text{ gal}$ $= 0.0353 \text{ ft}^{3}$ $= 33.8 \text{ fl oz}$ $1\text{mL} = 1 \text{ cm}^{3} = 1 \text{ cc}$ $\textbf{Temperature } \underline{Unit}$ $\textbf{Equivalents} (6.6)$ *Use equation in section 9.0 to convert	= 14.7 psi 1psi = 2.31 ft of H ₂ O Power (6.9) 1 W = 3.412 Btu/h = 0.00134 hp = 14.34 cal/min = 0.7376 ft·lb _f /s	7.0 Defined Units $1 J = 1 N \cdot m$ $1 N = 1 \text{ kg} \cdot m / s^2$ $1 Pa = 1 N / m^2$
<i>Time (6.3)</i> 1 d = 24 h 1 h = 60 min 1 min = 60 s 1 yr = 365 d	$\Delta 1 \text{ K} = \Delta 1 \text{ °C} = \Delta 1.8 \text{ °F} = \Delta 1.8 \text{ °R} Force (6.7) 1 \text{ N} = 0.225 \text{ lb} 1 \text{ kip} = 1,000 \text{ lb} $	1 hp = 550 ft·lb/sec Energy (6.10) 1 J = 0.239 cal = 9.48 x 10 ⁻⁴ Btu = 0.7376 ft·lb _f 1kW h = 3,600,000 J	1 V = 1 W / A 1 W = 1 J / s $1 \Omega = 1 V / A$ $1 Hz = 1 s^{-1}$ $1 F = 1 A \cdot s / V$ $1 H = 1 V \cdot s / A$

8.0 SI Prefixes

Numbers Less Than One			
Power of 10	Decimal Equivalent	Prefix	Abbreviation
10 ⁻¹	0.1	deci-	d
10 ⁻²	0.01	centi-	С
10 ⁻³	0.001	milli-	m
10 ⁻⁶	0.000001	micro-	μ
10 ⁻⁹	0.00000001	nano-	n
10 ⁻¹²		pico-	р
10 ⁻¹⁵		femto-	f
10 ⁻¹⁸		atto-	а
10 ⁻²¹		zepto-	Z
10 ⁻²⁴		yocto-	у

Ν	Numbers Greater Than One		
Power of 10	Whole Number Equivalent	Prefix	Abbreviation
10 ¹	10	deca-	da
10 ²	100	hecto-	h
10 ³	1000	kilo-	k
10 ⁶	1,000,000	Mega-	М
10 ⁹	1,000,000,000	Giga-	G
10 ¹²		Tera-	Т
10 ¹⁵		Peta-	Р
10 ¹⁸		Exa-	E
10 ²¹		Zetta-	Z
10 ²⁴		Yotta-	Y

9.0 Equations

Mass and Weight	
m = VD _m	(9.1)
W = mg	(9.2)
$W=VD_w$	(9.3)
$\frac{W = VD_w}{V = volume}$ $D_m = mass density$ $m = mass$ $D_w = weight density$ $W = weight$ $g = acceleration due to gravity$	

Temperature	
T _κ = T _c + 273	(9.4)
$T_{R} = T_{F} + 460$	(9.5)
$T_{F} = \frac{9}{5}T_{c} + 32$	(9.6a)
$\frac{T_{C} = \frac{T_{F} - 32}{1.8}}{1.8}$	(9.6b)
T_{κ} = temperature in Kelvin T_{c} = temperature in Celsius T_{R} = temperature in Rankin T_{F} = temperature in Fahrenheit	

Force ar	nd Mome	nt	
F = ma	(9.7a)	M = Fd⊥	(9.7b)
F = force m = mas a = acce M = mon d⊥= perp	s leration	distance	
Equatio	ns of Sta	tic Equilibr	rium
-		tic Equilibr ΣMΡ = 0	
$\Sigma F_x = 0$ $F_x = \text{forc}$ $F_y = \text{forc}$		$\Sigma M_P = 0$ direction	

© 2018 Project Lead The Way, Inc. PLTW Engineering Formula Sheet 2018 IED POE DE CEA AE ES/BE CIM EDD 3

9.0 Equations (Continued)

(9.9)

Energy: Work

W = work

F_{II} = force parallel to direction of displacementd = displacement

Power $P = \frac{E}{t} = \frac{W}{t}$ (9.10) $P = \tau \omega$ (9.11)P = powerE = energyW = workt = time $\tau = torque$ $\omega = angular velocity$

 $\frac{\textit{Efficiency}}{\textit{Efficiency}(\%) = \frac{P_{out}}{P_{in}} \cdot 100\% \quad (9.12)}$ $\frac{P_{out} = \textit{useful power output}}{P_{in} = \textit{total power input}}$

Energy: PotentialU = mgh(9.13)U = potential energy
m =mass
g = acceleration due to gravity
h = height

Energy: Kinetic	
$K = \frac{1}{2} mv^2$	(9.14)
K = kinetic energy m = mass v = velocity	
Energy: Thermal	
∆Q = mc∆T	(9.15)
$\Delta \mathbf{Q}$ = change in there	nal energy

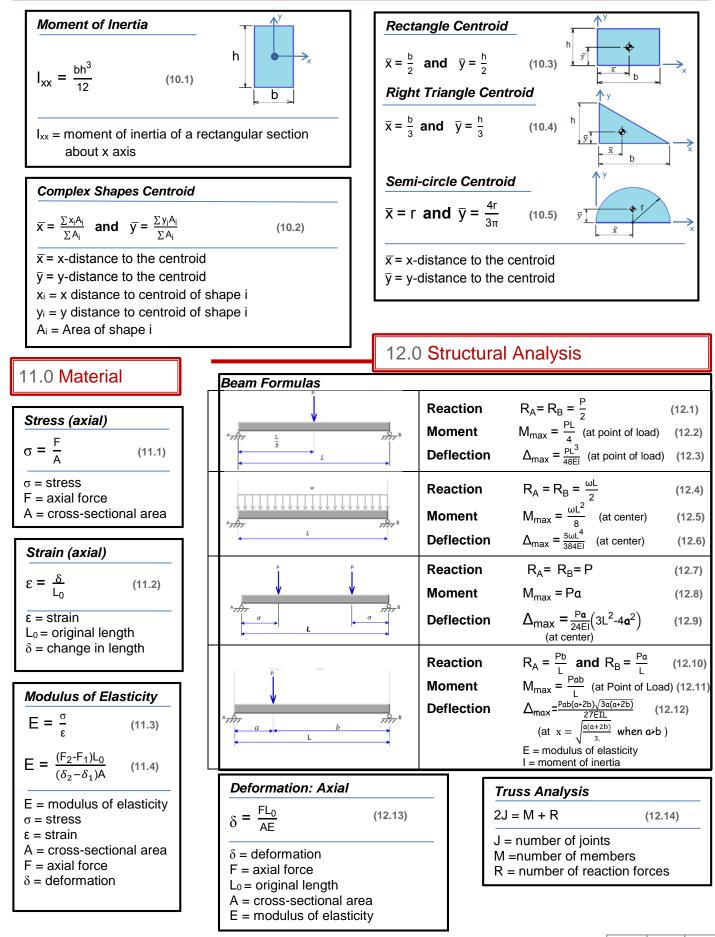
- m = mass
- c = specific heat
- ΔT = change in temperature

© 2018 Project Lead The Way, Inc. PLTW Engineering Formula Sheet 2018

Fluid Mechanics	
$p = \frac{F}{A}$	(9.16)
$\frac{V_1}{T_1} = \frac{V_2}{T_2}$ (Charles' Law)	(9.17)
$\frac{p_1}{T_1} = \frac{p_2}{T_2}$ (Gay-Lussanc's	Law) (9.18)
$p_1V_1 = p_2V_2$ (Boyle's La	aw) (9.19)
Q = Av	(9.20)
$A_1v_1 = A_2v_2$	(9.21)
P = Qp	(9.22)
absolute pressure = gau + atmospheric pi	
F = force $A = area$ $V = volume$ $T = absolute temperat$ $Q = flow rate$ $v = flow velocity$ $P = power$	ture
Maakaniaa	
Mechanics	
$\overline{S} = \frac{d}{t}$	(9.24)
$\overline{\mathbf{v}} = \frac{\Delta \mathbf{d}}{\Delta t}$	(9.25)
$a = \frac{v_f - v_i}{t}$	(9.26)
$X = \frac{v_i^2 \sin(2\theta)}{-g}$	(9.27)
$v = v_i + at$	(9.28)
$d = d_i + v_i t + \frac{1}{2} a t^2$	(9.29)
$v^2 = v_i^2 + 2a(d - d_i)$	(9.30)
$\tau = dFsin\theta$	(9.31)
$\overline{\mathbf{s}}$ = average speed $\overline{\mathbf{v}}$ = average velocity \mathbf{v} = velocity \mathbf{v}_i = initial velocity (t =0) \mathbf{a} = acceleration X = range t = time $\Delta \mathbf{d}$ = change in displacement \mathbf{d} = distance \mathbf{d} = initial distance (t =0)	

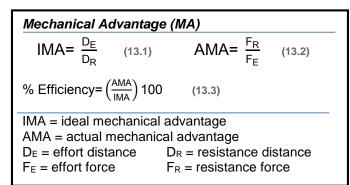
 d_i = initial distance (t=0) g = acceleration due to gravity

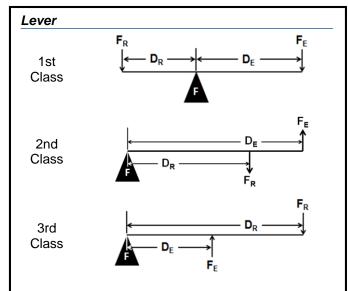
 $\theta = angle$

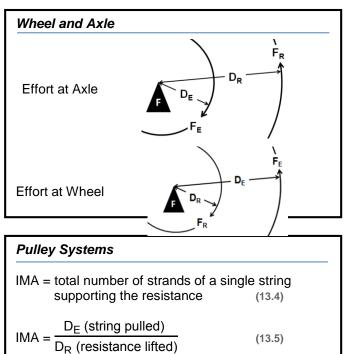

 $\tau = torque$ F = force

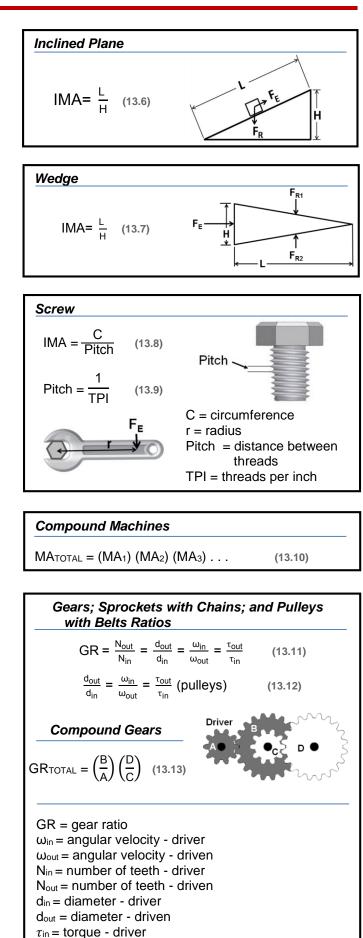
Electricity

Electricity	
Ohm's Law	
V = IR	(9.32)
P = IV	(9.33)
R_T (series) = $R_1 + R_2 + \cdots$	+ R _n ^(9.34)
R_{T} (parallel) = $\frac{1}{\frac{1}{R_{1}^{+}+\frac{1}{R_{2}^{+}}+\cdots+\frac{1}{R_{n}^{+}}}}$	(9.35)
Kirchhoff's Current Law	
$I_{T} = I_{1} + I_{2} + \dots + I_{n}$ or $I_{T} = \sum_{k=1}^{n} I_{k}$	(9.36)
Kirchhoff's Voltage Law	
$V_T = V_1 + V_2 + \dots + V_n$ or $V_T = \sum_{k=1}^n V_k$	(9.37)
V = voltage V _T = total voltage I = current I _T = total current R = resistance R _T = total resistance P = power	
Thermodynamics	
mermouynamics	
P = Q' = ΑUΔT	(9.38)
$P = Q' = AU\Delta T$ $P = Q' = \frac{\Delta Q}{\Delta t}$	(9.38) (9.39)
$P = Q' = \frac{\Delta Q}{\Delta t}$	(9.39)
$P = Q' = \frac{\Delta Q}{\Delta t}$ $U = \frac{1}{R} = \frac{k}{L}$	(9.39) (9.40)
$P = Q' = \frac{\Delta Q}{\Delta t}$ $U = \frac{1}{R} = \frac{k}{L}$ $P = \frac{kA\Delta T}{L}$	(9.39) (9.40) (9.41)
$P = Q' = \frac{\Delta Q}{\Delta t}$ $U = \frac{1}{R} = \frac{k}{L}$ $P = \frac{kA\Delta T}{L}$ $A_1v_1 = A_2v_2$ $P_{net} = \sigma Ae(T_2^{-4} - T_1^{-4})$ $k = \frac{PL}{A\Delta T}$	(9.39) (9.40) (9.41) (9.42)
$P = Q' = \frac{\Delta Q}{\Delta t}$ $U = \frac{1}{R} = \frac{k}{L}$ $P = \frac{kA\Delta T}{L}$ $A_1v_1 = A_2v_2$ $P_{net} = \sigma Ae(T_2^{-4} - T_1^{-4})$	(9.39) (9.40) (9.41) (9.42) (9.43) (9.44) uctivity nductivity ure

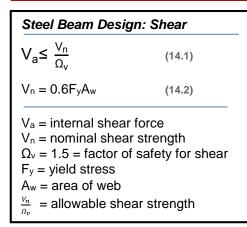

POE 4 DE 4 AE 4 CIM 4


10.0 Section Properties




© 2018 Project Lead The Way, Inc. PLTW Engineering Formula Sheet 2018 POE 5 AE 5 CEA 4

13.0 Simple Machines



 $\tau_{out} = torque - driven$

14.0 Structural Design

15.0 Storm Water Runoff

Storm Water Drainage	
$Q = C_f CiA$	(15.1)
$C_{c} = \frac{C_{1}A_{1} + C_{2}A_{2} + \cdots}{A_{1} + A_{2} + \cdots}$	(15.2)
Q = peak storm water runoff C _f = runoff coefficient adjustn factor C = runoff coefficient i = rainfall intensity (in./h) A = drainage area (acres)	· · ·

Runoff Coefficient Adjustment Factor	
Return	
Period Cf	
1, 2, 5, 10 1.0	
25 1.1	
50 1.2	
100	1.25

Steel Beam Design	: Moment
$M_a \le \frac{M_n}{\Omega_b}$	(14.3)
$M_n = F_y Z_x$	(14.4)
$ \begin{array}{l} M_a = \text{internal bending} \\ M_n = \text{nominal momen} \\ \Omega_b = 1.67 = \text{factor of} \\ \text{bending mor} \\ F_y = \text{yield stress} \\ Z_x = \text{plastic section n} \\ \text{neutral axis} \\ \frac{M_n}{\Omega_b} = \text{allowable bence} \end{array} $	nt strength safety for ment nodulus about
Potional Mathed Du	noff Coofficients
Rational Method Ru	
Categorized by Surfa	
Forested	0.059-0.2
Asphalt Briek	0.7-0.95
Brick	0.7—0.85 0.8—0.95
Concrete	0.8-0.95
Shingle roof	
Lawns, well draine	0.05-0.1
Up to 2% slope 2% to 7% slope	
Over 7% slope	<u>0.10—0.15</u> 0.15—0.2
Lawns, poor drain	
Up to 2% slope	0.13-0.17
2% to 7% slope	0.18—0.22
Over 7% slope	0.25-0.35
Driveways,	0.75-0.85
Categorized	
Farmland	0.05-0.3
Pasture	0.05-0.3
Unimproved	0.1-0.3
Parks	0.1-0.25
Cemeteries	0.1-0.25
Railroad yard	0.2-0.40
Playgrounds	0.2-0.35
Business D	
Neighborhood	0.5-0.7
City (downtown)	0.7—0.95
Residential	
Single-family	0.3—0.5
Multi-plexes,	0.4—0.6
Multi-plexes,	0.6—0.75
Suburban	0.25—0.4
Apartments,	0.5—0.7
Industr	
Light	0.5—0.8
Heavy	0.6—0.9

Spread Footing Design

$q_{net} = q_{allowable} - p_{footing}$	(14.5)
$p_{footing} = t_{footing} \cdot 150 \frac{lb}{ft^3}$	(14.6)
$q = \frac{P}{A}$	(14.7)

 $q_{net} = net allowable soil bearing$ pressure $<math>q_{allowable} = total allowable soil$ bearing pressure $p_{footing} = soil bearing pressure$ due to footing weight $t_{footing} = thickness of footing$ q = soil bearing pressureP = column load appliedA = area of footing

16.0 Water Supply

Hazen-Williams Formula

$h_{\rm f} = \frac{10.44 L Q^{1.85}}{C^{1.85} d^{4.8655}}$	(16.1)
h _f = head loss due to (ft of H ₂ O)	o friction
L = length of pipe (ft)
Q = water flow rate (gpm)
C = Hazen-Williams	constant
d = diameter of pipe	(in.)

Dynamic Head

dynamic head = static head - head loss (16.2) static head = change in elevation between source and discharge

17.0 Heat Loss/Gain

Heat Loss/Gain	
Q′ = AU∆T	(17.1)
$U = \frac{1}{R}$	(17.2)
Q = thermal energy	

Q = mermai energy
A = area of thermal conductivity
U = coefficient of heat
conductivity (U-factor)
ΔT = change in temperature
R = resistance to heat flow (R-
value)

18.0 Hazen-Williams Constants

Pipe Material	Typical Range	Clean, New Pipe	Typical Design Value
Cast Iron and Wrought Iron	80 - 150	130	100
Copper, Glass or Brass	120 - 150	140	130
Cement lined Steel or Iron		150	140
Plastic PVC or ABS	120 - 150	140	130
Steel, welded and seamless or interior riveted	80-150	140	100

19.0 Equivalent Length of (Generic) Fittings


0							Pipe Siz	ze				
Screwed	Fittings	1/4	3/8	1/2	3/4	1	1 1⁄4	1 1⁄2	2	2 ½	3	4
	Regular 90 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0
Elbows	Long radius 90 degree	1.5	2.0	2.2	2.3	2.7	3.2	3.4	3.6	3.6	4.0	4.6
	Regular 45 degree	0.3	0.5	0.7	0.9	1.3	1.7	2.1	2.7	3.2	4.0	5.5
Tana	Line Flow	0.8	1.2	1.7	2.4	3.2	4.6	5.6	7.7	9.3	12.0	17.0
Tees	Branch Flow	2.4	3.5	4.2	5.3	6.6	8.7	9.9	12.0	13.0	17.0	21.0
Return	Regular 180 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0
	Globe	21.0	22.0	22.0	24.0	29.0	37.0	42.0	54.0	62.0	79.0	110.0
Mahara	Gate	0.3	0.5	0.6	0.7	0.8	1.1	1.2	1.5	1.7	1.9	2.5
Valves	Angle	12.8	15.0	15.0	15.0	17.0	18.0	18.0	18.0	18.0	18.0	18.0
	Swing Check	7.2	7.3	8.0	8.8	11.0	13.0	15.0	19.0	22.0	27.0	38.0
Strainer			4.6	5.0	6.6	7.7	18.0	20.0	27.0	29.0	34.0	42.0

										Pipe	Size							
Flanged	Fittings	1/2	3/4	1	1 1⁄4	1 1⁄2	2	2 ½	3	4	5	6	8	10	12	14	16	18
	Regular 90 degree	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
Elbows	Long radius 90	1.1	1.3	1.6	2.0	2.3	2.7	2.7	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
	Regular 45 degree	0.5	0.6	0.8	1.1	1.3	1.7	2.0	2.5	3.5	4.5	5.6	7.7	9.0	11.0	13.0	15.0	16.0
Tees	Line Flow	0.7	0.8	1.0	1.3	1.5	1.8	1.9	2.2	2.8	3.3	3.8	4.7	5.2	6.0	6.4	7.2	7.6
1662	Branch Flow	2.0	2.6	3.3	4.4	5.2	6.6	7.5	9.4	12.0	15.0	18.0	24.0	30.0	34.0	37.0	43.0	47.0
Return	Regular 180 degree	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
Bends	Long radius 180	1.1	1.3	1.6	2.0	2.3	2.7	2.9	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
	Globe	38.0	40.0	45.0	54.0	59.0	70.0	77.0	94.0	120.0	150.0	190.0.	260.0	310.0	390.0			
Valves	Gate						2.6	2.7	2.8	2.9	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2
valves	Angle	15.0	15.0	17.0	18.0	18.0	21.0	22.0	285.0	38.0	50.0	63.0	90.0	120.0	140.0	160.0	190.0	210.0
	Swing Check	3.8	5.3	7.2	10.0	12.0	17.0	21.0	27.0	38.0	50.0	63.0	90.0	120.0	140.0			

20.0 555 Timer Design

$T = 0.693 (R_A + 2R_B)C$	(20.1)
$f = \frac{1}{T}$	(20.2)
duty-cycle = $\frac{(R_A + R_B)}{(R_A + 2R_B)}$ 100%	(20.3)
T = period f = frequency $R_A = resistance A$ $R_B = resistance B$ C = capacitance	

21.B Resistor Color Code

22.0 Speeds and Feeds $N = \frac{CS(12^{in.})}{\pi d} \qquad (22.1)$ $f_m = f_t \cdot n_t \cdot N \qquad (22.2)$ Plunge Rate = ½·f_m N = spindle speed (rpm) CS = cutting speed (ft/min) d = diameter (in.) $f_m = \text{feed rate (in./min)}$ $f_t = \text{feed (in./tooth/rev)}$ $n_t = \text{number of teeth}$

5% 21.C Capacitor Code Code Tolerance ±0.05% А В ±0.1% С ±0.25% ±0.5% D F $\pm 1\%$ G ±2% ±5% J Κ $\pm 10\%$ M or NONE ±20% Ν ±30% Q -10%, +30% S -20%, +50% Т -10%, +50% -20%, +80% Ζ 23.B Roll Angle $\theta_{\text{Roll}} = Tan^{-1} \left(\frac{Opp}{Adj} \right)$ (23.26) **Robot Top View** Adj Opp

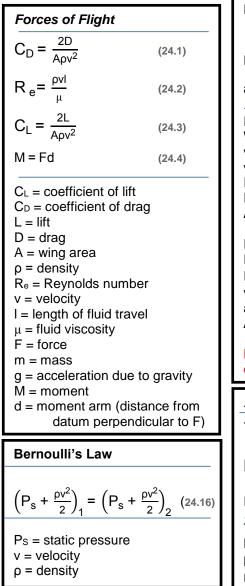
 θ_{Roll}

21.A Boolean Algebra

Boolean The	eorems	
X• 0 = 0	(21.1)	
X•1 = X	(21.2)	
X∙X=X	(21.3)	
X • X =0	(21.4)	
X + 0 = X	(21.5)	F
X + 1 = 1	(21.6)	
X + X = X	(21.7)	
$X + \overline{X} = 1$	(21.8)	Ľ
$\overline{\overline{X}} = X$	(21.9)	Γ

Consensus Th	neorems
$X + \overline{X}Y = X + Y$	(21.16)
$X + \overline{X}\overline{Y} = X + \overline{Y}$	(21.17)
$\overline{X} + XY = \overline{X} + Y$	(21.18)
$\overline{X} + X\overline{Y} = \overline{X} + \overline{Y}$	(21.19)
DeMorgan's T	heorems
$\overline{XY} = \overline{X} + \overline{Y}$	(21.20)
$\overline{X+Y} = \overline{X} \bullet \overline{Y}$	(21.21)
Commutative	Law
$X \bullet Y = Y \bullet X$	(21.10)
X+Y = Y+X	(21.11)
e Law	
\7	(04.40)

Associative Law	
X(YZ) = (XY)Z	(21.12)
X + (Y + Z) = (X + Y) + Z	(21.13)
Distributive Law	
<i>Distributive Law</i> X(Y+Z) = XY + XZ	(21.14)


23.A G&M Codes

G00 = Rapid Traverse	(23.1)		
G01 = Straight Line Interpolation	(23.2)		
G02 = Circular Interpolation (clockwise)	(23.3)		
G03 = Circular Interpolation (c-clockwise)			
G04 = Dwell (wait)	(23.5)		
G05 = Pause for user intervention	(23.6)		
G20 = Inch programming units	(23.7)		
G21 = Millimeter programming units	(23.8)		
G80 = Canned cycle cancel	(23.9)		
G81 = Drilling cycle	(23.10)		
G82 = Drilling cycle with dwell	(23.11)		
G90 = Absolute Coordinates	(23.12)		
G91 = Relative Coordinates	(23.13)		
M00 = Pause	(23.14)		
M01 = Optional stop	(23.15)		
M02 = End of program	(23.16)		
M03 = Spindle on	(23.17)		
M05 = Spindle off	(23.18)		
M06 = Tool change	(23.19)		
M08 = Accessory # 1 on	(23.20)		
M09 = Accessory # 1 off	(23.21)		
M10 = Accessory # 2 on	(23.22)		
M11 = Accessory # 2 off	(23.23)		
M30 = Program end and reset	(23.24)		
M47 = Rewind	(23.25)		

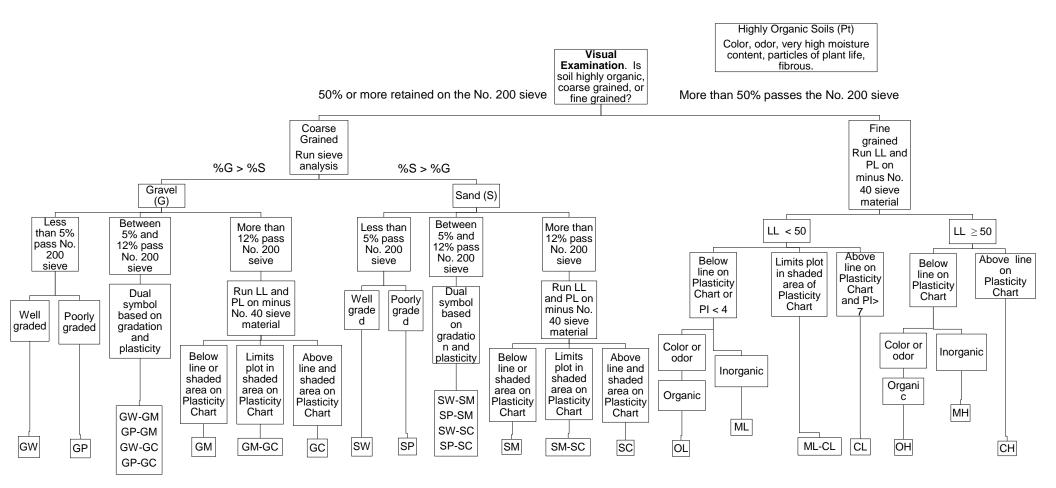
© 2018 Project Lead The Way, Inc. PLTW Engineering Formula Sheet 2018

v17.2

24.0 Aerospace

Propulsion	
$F_N = W(v_j - v_o)$	(24.5)
$I = F_{ave} \Delta t$	(24.6)
$F_{net} = F_{avg} - F_g$	(24.7)
$a = \frac{v_f}{\Delta t}$	(24.8)
$F_{N} = net thrust$ $W = air mass flow$ $v_{o} = flight velocity$ $v_{j} = jet velocity$ $I = total impulse$ $F_{ave} = average thrus$ $\Delta t = change in time$ $duration)$ $F_{net} = net force$ $F_{g} = force of gravity$ $v_{f} = final velocity$ $a = acceleration$ $\Delta t = change in time$ $duration)$ $NOTE: F_{ave} and F_{avg}$ $confused.$	(thrust c)
Atmosphere Parar	meters
T = 15.04 - 0.00649	
$p = 101.29 \left[\frac{(T + 2)^2}{288} \right]$	$\left[\frac{73.1)}{08}\right]^{5.256}$ (24.18)
$\rho = \frac{p}{0.2869(T + 273.1)}$) (24.19)
T = temperature h = height p = pressure ρ = density	

Energy $K = \frac{1}{2} mv^2$ (24.9) $U = \frac{-GMm}{R}$ (24.10) $\mathsf{E} = \mathsf{U} + \mathsf{K} = -\frac{\mathsf{GMm}}{2\mathsf{R}}$ (24.11)G = $6.67 \times 10^{-11} \frac{\text{m}^3}{\text{kg} \times s^2}$ (24.12) K = kinetic energy m = mass v = velocityU = gravitational potential energy G = universal gravitation constant M = mass of central body m = mass of orbiting object R = Distance center main body to center of orbiting object E = Total Energy of an orbit MEarth= 5.97 x 10²⁴ kg $r_{Earth} = 6.378 \times 10^3 \text{ km}$ **Orbital Mechanics** $e = \sqrt{1 - \frac{b^2}{a^2}}$ (24.13) $T = 2\pi \frac{a^{\frac{3}{2}}}{\sqrt{\mu}} = 2\pi \frac{a^{\frac{3}{2}}}{\sqrt{GM}}$ (24.14) $F = \frac{GMm}{r^2}$ (24.15) e = eccentricityb = semi-minor axis a =semi-major axis T = orbital period a = semi-major axis μ = gravitational parameter F = force of gravity between two bodies G = universal gravitation constant M =mass of central body m = mass of orbiting object r = distance between center of two


obiects

25.0 Environmental Susta	linability			
colonies/mL = # colonies/dilution	(25.1)			
Transformation Efficiency (# Transform	mants/µg) = $\frac{\# \text{ of tra}}{\mu g}$	of DNA · final volume at recovery volume plated (mL)	(25.2)	
# of moles of CO ₂ # of moles of glucose produced in formula		sumed in experiment e produced in experiment	(25.3)	
Economic Growth = $\frac{\text{GDP}_2\text{-}\text{GDP}_1}{\text{GDP}_1}$	(25.4)	GDP = gross domestic product		
$R_f = \frac{\text{distance the substance travels}}{\text{distance the solvent travels}}$	(25.5)	R_f = retention factor		
2018 Project Lead The Way, Inc.			ES	4 AE 6

© 2018 Project Lead The Way, Inc. PLTW Engineering Formula Sheet 2018

OF O Fassing and all Custoin ability

26.0 USCS Soil Classification Chart

